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Plutella xylostella larvae.
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The ecological implications on biological control of insecticidal transgenic plants, which produce crystal
(Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt), remains a contentious issue and
affects risk assessment decisions. In this study, we used a unique system of resistant insects, Bt plants and
a predator to critically evaluate this issue. The effects of broccoli type (normal or expressing Cry1Ac pro-
tein) and insect genotype (susceptible or CrylAc-resistant) of Plutella xylostella L. (Lepidoptera:
Plutellidae) were examined for their effects on the life history of the predator, Coleomegilla maculata

Key ‘.’VordS: Lo DeGeer (Coleoptera: Coccinellidae) over two generations. Additional behavioral studies were conducted
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Biosafety on prey choice. C. maculata could not discriminate between Bt-resistant and susceptible genotypes of
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P. xylostella, nor between Bt and normal broccoli plants with resistant genotypes of P. xylostella feeding
on them. The larval and pupal period, adult weight and fecundity of each female were not significantly
different when C. maculata larvae fed on different genotypes (Bt-resistant or susceptible) of insect prey
larvae reared on Bt or non-Bt broccoli plants. The life-history parameters of the subsequent generation
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of C. maculata fed on Bt broccoli-reared resistant P. xylostella were also not significantly different from
those on non-Bt broccoli. These results indicated that Cry1Ac did not harm the life history or prey accep-
tance of an important predator after two generations of exposure. Plants expressing Cry1Ac are unlikely
to affect this important predator in the field.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Genetically engineered (GE) plants expressing insecticidal pro-
teins derived from the soil bacterium Bacillus thuringiensis (Bt)
have heralded a new era in crop protection (Shelton et al., 2002;
Meissle et al., 2005; Kliimper and Qaim, 2014). Since their intro-
duction in 1996, Bt crops have been widely adopted and in 2014
were planted on 78.8 million ha in 28 countries (James, 2014).
Several major pests have been successfully controlled, and insecti-
cides use for Lepidoptera and Coleoptera has been substantially
reduced throughout most adopting countries (Shelton et al.,
2002; Carriére et al.,, 2003; Wu et al.,, 2008; Hutchison et al.,
2010; Brookes and Barfoot, 2012; Kathage and Qaim, 2012;
Kliimper and Qaim, 2014; Keweshan et al., 2015; Wangila et al.,
2015). However, potential detrimental effects on non-target organ-
isms, in particular natural enemies (i.e., predators and parasitoids)
in the agricultural ecosystem, became a major topic in risk assess-
ment to Bt crops. Generally, natural enemies could consume Bt
protein in two ways: direct exposure to Bt proteins when they con-
sume plants material (Cividanes et al., 2011) and indirectly when
their prey fed on Bt plants. For endoporasitoids that are more inti-
mate with their host because they complete their larval develop-
ment in a single insect host, most studies have concluded that
any adverse effects seen with a Bt-susceptible host were
prey-quality mediated, meaning the prey was being harmed by
the Cry protein and this in turn had a detrimental effect on the par-
asitoid (Baur and Boethel, 2003; Liu et al., 2005a,b,c; Sanders et al.,
2007; Ding et al., 2009). When Bt-resistant pest hosts were used,
no direct toxic effects were found (Johnson, 1997; Atwood et al.,
1998; Schuler et al.,, 1999, 2004; Chen et al., 2008; Liu et al.,
2011; Tian et al., 2014a).

In contrast to parasitoids, predators are usually generalists that
feed on several different prey species and therefore have increased
chances of coming into contact with prey that have consumed Bt
proteins. However, when non-susceptible or resistant prey have
been used as hosts, studies have shown that Bt proteins did not
cause any detrimental effects to predators even though the
ingested Bt protein by the predator was bioactive to the targeted
pest (Romeis et al., 2006; Naranjo, 2009; Garcia et al.,, 2010;
Lawo et al., 2010; Li et al.,, 2011; Wang et al., 2012; Tian et al,,
2012, 2013, 2014b; Zhao et al., 2013; Kumar et al.,, 2014; Su
et al., 2015). However, a few studies have reported Bt crops harm
natural enemies (Hilbeck et al., 1999; Meier and Hilbeck, 2001;
Schmidt et al., 2009; Lévei et al., 2009) but these studies have been
criticized for their methodology, including using susceptible prey
(see Shelton et al., 2009a,b; Romeis et al., 2013).

The diamondback moth, Plutella xylostella L. (Lepidoptera:
Plutellidae), is considered the most important insect pest of crucif-
erous crops globally because of its high fecundity and capacity to
disperse long distances (Talekar and Shelton, 1993; Zalucki et al.,
2012). In order to control P. xylostella and other lepidopteran pests,
several Bt crucifers express Cry1A protein have been developed
(Shelton et al., 2008). Our previous studies have demonstrated that
Bt crucifers effectively control P. xylostella (Metz et al., 1995; Tang
et al., 1999, 2001; Cao et al., 1999, 2002, 2005; Shelton et al., 2000,
2008; Zhao et al., 2000, 2003, 2005). Studies have also been under-
taken to assess the potential risk of Bt crucifers to natural enemies

of P. xylostella and revealed no adverse effects on the tested species
when resistant hosts were used (Chen et al., 2008; Liu et al., 2011;
Tian et al., 2013, 2014b).

Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae) is a
very common and abundant predator in many cropping systems
throughout the US. Both larvae and adults are important predators
of many pest species. Several studies have evaluated the safety of
Bt plants on C. maculata (e.g. Lundgren et al.,, 2005; Li et al,
2011; Tian et al., 2012), utilizing susceptible (SS) or resistant
(RR) prey. While such studies are useful, they do not reflect the full
range of insect genotypes found in the field, i.e., heterozygotes (RS).
It is possible that predators that consume the RS-genotype larvae
from the Bt crops could have their development affected indirectly.
Furthermore, predators will not only encounter different insect
genotypes, but also different plant types. The use of Bt crops in
many countries requires that non-Bt crops be planted in the same
area (i.e. for refuges) as part of a resistance management strategy
(Bates et al., 2005). Thus, it is important to consider the genotype
of the prey as well as the plant genotype on which it is found when
studying their effects on the development and prey acceptance of
predators such as C. maculata. Our resistant P. xylostella and Bt
broccoli system allows us to investigate this question on a practical
basis.

The present study explores whether prey genotype and plant
type can affect the life history of C. maculata and its progeny over
two generations. Specifically, the following objectives were
addressed in this study: (1) determine if C. maculata can discrimi-
nate between resistant (RR) and susceptible (SS and RS) genotypes
of P. xylostella; (2) determine if C. maculata can discriminate plant
types (Bt plants or non-Bt plants) hosting resistant genotypes of P.
xylostella, and; (3) assess the effects of Cry1Ac broccoli plants on
selected life history parameters of C. maculata when the plants
are infested by RR, RS, and SS genotypes of P. xylostella for two gen-
erations; (4) estimate the level of Cry1Ac protein after C. maculata
have fed on Bt broccoli-fed RR P. xylostella larvae.

2. Material and methods
2.1. Insects

Three strains of P. xylostella were used: (1) a Cry1Ac-resistant
strain (RR), which can survive on Cry1Ac Bt broccoli plants (Zhao
et al., 2005); (2) a Cry1Ac-susceptible strain (SS, Geneva 88), which
has been maintained on a wheat germ-casein artificial diet for over
300 generations (Shelton et al., 1991); (3) a heterozygous strain
(RS), which was developed by crossing RR with G88. SS and RS
strain larvae cannot survive on CrylAc Bt broccoli plants (Liu
et al.,, 2011).

Both larvae and adult C. maculata originated from Pioneer
Hi-Bred International, Inc. (Johnston, IA) and were reared on
decapsulated eggs of brine shrimp Artemia franciscana (Kellogg)
(Decapoda, Penaeus) (Brine Shrimp Direct, Ogden UT) (Li et al,,
2011) and a 1.5% agar solution provided separately for >20 gener-
ations. These insects were maintained in a climatic chamber at
27+1°C, 50+10% RH and 16:8 L:D photoperiod. In this article
we use the terms G1 and G2 to refer to the generations of the
predator since exposure to Bt broccoli plants.
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2.2. Bt broccoli plants

We used Brassica oleracea L., var. italica’ Green Comet as the cul-
tivar for our Bt broccoli plants. The transgenic broccoli produces
high levels of Cry1Ac (Metz et al., 1995). To ensure the biological
activity of the Bt broccoli, the plants were screened with the sus-
ceptible P. xylostella neonates when plants were 4 to 5 wk old. In
all the studies reported in this paper, broccoli plants with 8 true
leaves were used. Analysis by ELISA indicated that the Cry1Ac pro-
tein level was 12.33 + 1.62 pg/g fresh leaf tissue (Liu et al., 2011).
Packman, a near-isoline, was used as the non-Bt broccoli.

2.3. Can C. maculata discriminate between different genotypes of P.
xylostella?

Sixty P. xylostella 2nd instars of a single genotype (Cry1Ac-RR,
RS, or SS) were placed on a non-Bt broccoli leaf, with its petiole
inserted in a 100 ml flask filled with water. Larvae from the three
genotypes P. xylostella that fed on three non-Bt broccoli leaves
were placed into the cage (42 cm x 42 cm x 42 cm) for 1d, then
two newly emerged C. maculata adults or two 3rd instars were
released in the center of each cage. The cages with 60 Cry1Ac-RR,
RS, or SS P. xylostella 2nd instars on each leaf, but without C. mac-
ulata, served as controls in order to determine the numbers of lost
or dead larvae. After 48 h, the numbers of remaining larvae on each
leaf were counted in the cages. Predation rates (% predation =
(initial number of P. xylostella — number of remaining larvae —
number of lost or dead larvae)/initial number of P. xylostella) were
recorded. The larval treatment was repeated six times and the
adult treatment four times.

2.4. Can C. maculata discriminate between plant types hosting
resistant genotypes of P. xylostella?

Sixty 2nd instar P. xylostella Cry1Ac-RR were placed on a non-Bt
broccoli leaf and another 60 2nd instar P. xylostella Cry1Ac-RR were
placed on a Bt leaf. Each leaf was inserted with its petiole in a
100 ml flask filled with water for 1 d before being presented to
the natural enemy. The Bt broccoli and non-Bt broccoli leaf with
Cry1Ac-RR larvae were placed into the cages (42 cm x 42 cm x
42 cm), then two new emerged C. maculata adults or two 3rd
instars were released in the center of each cage. After 48 h, the
numbers of remaining larvae were counted in the cages. The cages
with 60 Cry1Ac-RR P. xylostella 2nd instars on a Bt broccoli leaf and
60 Cry1Ac-RR P. xylostella 2nd instars on non-Bt broccoli leaf, but
without C. maculata, served as controls. The predation rate was cal-
culated in a similar way as in the previous experiment. Predation
rates (% predation = (initial number of P. xylostella — number of
remaining larvae — number of lost or dead larvae)/initial number
of P. xylostella). The experiments with both C. maculata larvae
and adults were replicated 6 times.

2.5. Effect of plant type and prey genotype on the life history of the G1
C. maculata

Because the RS and SS strains could not survive on Cry1Ac broc-
coli plants (Zhao et al., 2005), there were only four treatments in
this study: RR on Bt broccoli, RR on non-Bt broccoli, RS on
non-Bt broccoli and SS on non-Bt broccoli. For treatment with
the RR on Bt broccoli, RR neonates were fed on Bt broccoli until
the 2nd instar. The 2nd instar P. xylostella larvae were then trans-
ferred to a Cry1Ac leaf in a 40 ml cup containing a 1st instar C. mac-
ulata larva. We added new 2nd instar P. xylostella to the C. maculata
each day until the C. maculata larva began to pupate. For the other
three treatments, the neonates of RR, RS and SS fed on non-Bt broc-
coli plants, but in all other ways the experiment was the same as

that described for RR on Bt broccoli. Each treatment used 30-40
C. maculata larvae with each larva as a replicate. The experiments
were conducted in a climatic chamber at 27 £ 1 °C, 50 + 10% RH
and 16:8 L:D photoperiod. After C. maculata adults emerged, one
female and one male were put together in a Petri dish of 10 cm
diameter, which has been reared on decapsulated eggs of brine
shrimp A. franciscana (Brine Shrimp Direct, Ogden UT) and not
exposed to Cry1Ac. We recorded the following data: C. maculata
larval weight at 7 d, the number of larval and pupal days, adult
fresh weight (<24 h after emerge), the fecundity of each female
over one month, and the hatching rate of the eggs.

2.6. Life history of G2 C. maculata reared from different genotypes of P.
xylostella exposed to Bt or non-Bt broccoli

In order to evaluate whether Bt broccoli plants and P. xylostella
genotypes would affect the development of C. maculata’s progeny,
we studied the life history during the 2nd generation of C. maculata
whose parents had fed on the different genotypes of P. xylostella
larvae reared on Bt or non-Bt broccoli. The methods were similar
to those for the experiment described above. Each genotype of
P. xylostella neonates were fed on Cry1Ac (RR on Bt treatment) or
non-Bt (RR, RS and SS on non-Bt treatments) broccoli until the
2nd instar, then provided to the 1st instar C. maculata whose par-
ents had fed on the different genotypes of P. xylostella larvae on Bt
or non-Bt broccoli. We added new 2nd instars to the C. maculata
each day until the C. maculata larva begun to pupate. Each treat-
ment used 30-40 C. maculata larvae with each larva as a replica-
tion. We recorded the following data: C. maculata larval weight
at 8d, larval and pupal development time, adult’s fresh weight
(<24 h after emerge), the fecundity of each female over one month,
and the hatching rate of the eggs.

2.7. Quantification of Cry1Ac in C. maculata and P. xylostella

RR neonates of P. xylostella were fed on Bt broccoli until the 2nd
instar, and then the larvae were provided to C. maculata. The
amount of Cry1Ac in the RR larvae of P. xylostella, and in 4th instar,
pupae and adults of C. maculata were determined by ELISA using
the EnviroLogix Cry1Ac/Cry1Ab kit (Portland, ME). Kits were iden-
tified as: QualiPlate™ Kit for Cry1Ab/Cry1Ac — AP 003 CRBS. Each
sample included 20 P. xylostella, 5 larvae, pupae or adults of C. mac-
ulata, separately, and was ground and homogenized in 0.2 ml
Extraction/dilution buffer (EnviroLogix). ELISA was conducted
according to the manufacturer’s instructions. Based on preliminary
tests, each sample extraction was diluted by 1:20 and the optical
density value of the sample was measured using a microplate
reader set at 450 nm. The larvae fed on non-Bt broccoli were used
as the controls. Each treatment was replicated 6-10 times.

2.8. Statistical analyses

Descriptive statistics are given as mean values and standard
errors of the mean. Because the data fit the assumptions for para-
metric analysis, data were analyzed using one-way ANOVA and dif-
ferences between treatments means were tested with the Tukey
test at a 5% level of significance. All statistical analyses were con-
ducted using SPSS 17.0 Windows (1998) (SPSS, Chicago, IL).

3. Results
3.1. Can C. maculata discriminate different genotypes of P. xylostella?

C. maculata did not discriminate between different genotypes of
P. xylostella (Fig. 1). There were no significant differences in
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percentages of RR, RS or SS genotype P. xylostella consumed by C.
maculata larvae (F=3.860; df=2.9; P=0.062) or adults
(F=0.434; df =2.12; P=0.658).

3.2. Can C. maculata discriminate plant types hosting resistant
genotypes of Plutella xylostella?

Predation by C. maculata was independent of whether host
plants expressed Bt toxins or not. The lady beetle larvae attacked
42.2 +7.0% and 39.4 + 5.5% when RR P. xylostella larvae were feed-
ing on a Cry1Ac leaf or non-Bt leaf, respectively. Similarly, adult
beetles killed 50.6 + 5.3% and 48.9 + 10.7% of the RR P. xylostella lar-
vae. There were no significant differences between the Bt and
non-Bt treatments for larvae (t = 0.585, df =5, P=0.584) or adults
(t=0.133, df = 5, P=0.900).

3.3. Effect of plant type and prey genotype on the life history of the G1
C. maculata

When C. maculata larvae fed on Bt or non-Bt broccoli-reared RR,
RS and SS genotype larvae, they developed normally to adults
(Table 1). Larval weight, the developmental time of larvae and
pupae, adult weights, female fecundity and egg hatching rate were
not significantly different in the four treatments.

3.4. Effect of plant type and prey genotype on the life history of the G2
C. maculata

When C. maculata were reared on Bt broccoli-reared RR, or
non-Bt broccoli-reared RR, RS and SS genotype for the 2nd genera-
tion, there were no significant differences in larval weight, the
developmental time of larvae and pupae, adult weights, fecundity
of each female and egg hatching in the four treatments (Table 2).

3.5. Quantification of Cry1Ac in C. maculata and P. xylostella

Cry1Ac levels in C. maculata are presented as pg/g of fresh tissue
and pg x 1073/insect (Table 3). For the tissue data, the highest con-
centrations (2.35 png/g) were detected in 3rd instar C. maculata.
However, on a per-insect basis, the highest CrylAc level
(17.20 pg x 10~3/insect) was found in the 4th instar. The pupae of
C. maculata had very low levels of Cry1Ac (0.02 ug x 10~3/insect),
while a much high level (1.36 ug x 10~3/insect) was detected in
the pupal cocoon. No Cry1Ac was found in newly emerged adults
without food, whereas Cry1Ac was found if the adults fed on Bt
broccoli-reared RR P. xylostella larvae for 3,4 and 6 d. Cry1Ac protein
did not accumulate in C. maculata with increased feeding days (per
tissue: F=1.021; df=2.16; P=0.382; per insect: F=1.068;
df=2.18; P=0.367).

4. Discussion

In agroecosystems, using predators and parasitoids to control
pests is a key component in integrated pest management (IPM)
systems and these beneficial organisms should be conserved
(Croft, 1990). C. maculata is one of the most important and widely
distributed natural enemies from southern Canada to northern
South America (Gordon, 1985). Adults and larvae prey on aphids,
mites, lepidopteran eggs and larvae (Krafsur and Obrycki, 2000).
The compatibility of transgenic Bt plants with this predator has
been discussed (e.g. Lundgren et al., 2005; Li et al., 2011; Tian
et al,, 2012; Liu et al,, 2014). Lundgren et al. (2005) reported that
the fitness parameters of C. maculata were similar when its larvae
were reared to pupation on aphids that had consumed Bt or non-Bt
corn plants, but aphids contain very little if any Cry protein from Bt
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Fig. 1. Predation (%) of Plutella xylostella fed on Bt resistance genotypes by
Coleomegilla maculata on normal (non-Bt) broccoli. The letters reflect the lack of
significant differences at the 0.05 error level.

plants. Tian et al. (2012) reported that adult weight and female
fecundity of C. maculata were not different when they were fed
resistant Spodoptera frugiperda larvae reared on either Bt or control
maize leaves during both generations. When C. maculata larvae
were fed with resistant Trichoplusia ni larvae reared on either Bt
or control cotton, the fitness parameters of C. maculata were also
not affected (Li et al., 2011). Because the lady beetle also feeds
on plant tissues, for example, pollen and nectar (Cividanes et al.,
2011), the direct effects of Bt crop have been evaluated (Duan
et al., 2002; Moser et al., 2008). Duan et al. (2002) reported that
transgenic corn pollen expressing Cry3Bb1 protein had no measur-
able negative effects on the survival and life history of C. maculata
larvae, nor any adverse effect on adult survival and reproductive
capacity. However, Moser et al. (2008) found developmental time
of 4th instar C. maculata increased when they fed on Bt corn seed-
lings daily but the results are questionable since the studies did not
include a proper negative control. Generally, most published
research supports the conclusion that Bt proteins are safe for this
important predator.

In the present study, we evaluated more dimensions by exam-
ining the effect of prey genotypes, their interaction with plant type
and any potential longer-term effect in subsequent generations.
Our results showed that the life-history parameters of C. maculata
fed on resistant (RR) or susceptible (RS and SS) larvae were similar
when the larvae fed on Bt broccoli and non-Bt broccoli over two
generations. Additionally, our research has shown that when
Cry1Ac toxin is consumed by Cry1Ac-resistant P. xylostella larvae,
it remains biologically active (Liu et al., 2011). In this study,
CrylAc protein was detected in C. maculata that fed on Bt
broccoli-reared resistant P. xylostella larvae. Moreover, we exposed
C. maculata to higher concentrations of Cry1Ac than under field
conditions. Our present results further confirm that this Cry pro-
tein is safe for this important predator even though C. maculata
was exposed to biologically active Cry1Ac.

The effect of Cry toxins on important predators was reviewed
by Romeis et al. (2006) who suggested that most predators are
not susceptible to lepidopteran -active proteins. Recent research
reported that several Cry proteins have no direct toxicity to some
important predators, including Chrysoperla carnea (Lawo et al.,
2010), Stethorus punctillum (Li and Romeis, 2010), Chrysoperla
sinica (Wang et al., 2012), Propylaea japonica (Zhao et al., 2013),
Chrysoperla rufilabris (Tian et al.,, 2013), Geocoris punctipes and
Orius insidiosus (Tian et al., 2014b).

In the present study we added the potential interaction
between predation and prey resistance to Bt proteins. Some strains
of P. xylostella have evolved resistance to Bt sprays in the field
(Shelton et al., 2008), and resistant strains can also survive on Bt
broccoli in the lab (Zhao et al., 2000). If a field is sprayed with Bt
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Life history parameters of G1 Coleomegilla maculata fed on Bt or non-Bt broccoli plants hosting RR, RS or SS genotypes Plutella xylostella (Means + SEM).
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Treatments

Larval weight at Larval period Pupal period

Adult weight

Eggs per female

Eggs hatching

7th days (mg) (d) (d) (mg) in one month rate (%)
RR on Bt broccoli 41+03a 13.9+0.3a 43+0.1a 9.1+0.3a 28.0£4.9a 82.8 £6.0a
RR on non-Bt broccoli 43+0.7a 13.0+£0.4a 4.0+0.2a 8.6 £0.7a 48.1£10.9a 68.1+4.9a
RS on non-Bt broccoli 5.2+0.9a 13.0+0.3a 3.8+0.2a 9.2+04a 263+2.8a 75.5+4.7a
SS on non-Bt broccoli 4.4+03a 13.4+0.4a 4.1+0.1a 8.5+0.4a 50.3 £22.5a 65.0 £6.5a
F=0.682, F=1.678, F=1.686, F=0.580, F=0.805, F=1.498,
df = 3.70, df=3.103, df=3.72, df = 3.70, df=3.24, df=3.31,
P=0.566 P=0.176 P=0.178 P=0.630 P=0.503 P=0.234

One-way ANOVA followed by Tukey HSD when significant difference was detected. Means followed by the same letter in the same column are not significantly different at the

0.05 probability level.

Table 2

Life history parameters of G2 Coleomegilla maculata fed on Bt or non-Bt broccoli plants hosting RR, RS or SS genotypes Plutella xylostella (Means + SEM).

Treatments Larval weight at 8th days (mg) Larval period Pupal period Adult weight (mg) Eggs per female in one month Eggs hatching rate (%)
(d) (d)
RR on Bt broccoli 6.6 £ 0.6a 12.3+0.4a 3.7+0.1a 9.4 +0.5a 33.3+10.5a 55.6 +6.8a
RR on non-Bt broccoli 6.5+ 0.5a 11.9+0.3a 3.875+02a 9.0+0.4a 61.0 £20.3a 67.0 £7.6a
RS on non-Bt broccoli 6.7 +0.8a 12.1+0.a 3.3+0.2a 9.0+0.7a 234+3.1a 61.2+£9.7a
SS on non-Bt broccoli 6.6 +0.6a 11.3+0.3a 3.6+0.1a 10.3£0.4a 48.3+£12.0a 65.2+8.3a
F=0.028, F=1.620, F=1.188, F=1.949, F=1.577, F=0.428,
df =3.85, df=3.75, df =3.64, df =3.65, df =3.24, df=3.29,
P=09 P=0.192 P=0.322 P=0.130 P=0221 P=0.735

One-way ANOVA followed by Tukey HSD when significant difference was detected. Means followed by the same letter in the same column are not significantly different at the

0.05 probability level.

Table 3

Cry1Ac concentration in Plutella xylostella and in Coleomegilla maculata (Means + SEM).

Cry1Ac concentration per
fresh g tissue (pg/g)

Cry1Ac concentration per
insect (ug x 10 3/insect)

2nd P. xylostella larvae 23+03 1.7+04
2nd C. maculata larvae 22+04 29+05
3rd C. maculata larvae 24+04 11.2+1.2
4th C. maculata larvae 1.8+03 17.2+24
C. maculata pupae 0.0+0.0 0.2+0.0
C. maculata pupae cocoon 1404 0.8+0.3
New emerged C. maculata adult 0 0

C. maculata adult feed for 3 d 0.7+0.1 119+24
C. maculata adult feed for 4 d 1.0+0.1 16.0+2.1
C. maculata adult feed for 6 d 0.8+0.1 123+1.2

or contains Bt plants, over time one would expect the field to con-
tain resistant (RR), heterozygous (RS) and susceptible (SS) larvae. If
a predator has a preference to remove RR individuals, then this
would reduce the likelihood of the population evolving resistance
to the Bt crop.

However, our results indicated that C. maculata could not dis-
criminate between different genotypes of RR, RS and SS larvae
fed on non-Bt broccoli (Fig. 1). Thus in theory, C. maculata could
not directly alter prey resistance evolution. On the other hand,
our research in the greenhouse demonstrated that C. maculata,
combined with unsprayed, non-Bt refuge plants delayed resistance
to Bt broccoli plants in the P. xylostella population (Liu et al., 2014).
Arpaia et al. (1997) proposed a mathematical model to simulate
the impact of natural enemies on the rate of Leptinotarsa decemlin-
eata Say adaptation to Bt-toxin-expressing transgenic potato
plants when the Bt-expressing plants are mixed at the
plot-to-plot level with normal potato plants. Their modeling
results suggested that C. maculata predatory behavior could
decrease the rate at which L. decemlineata adapted to Bt-toxins if
plot-to-plot mixed-planting were used. Prey resistance evolution
is complex and whether the predator would accelerate or slow
down resistance evolution needs further study in the field.

Predation by both C. maculata adult and larvae was not signifi-
cantly different when resistant P. xylostella larvae fed on Bt broccoli
or non-Bt broccoli. Therefore, we conclude that C. maculata could
not distinguish Bt plants, which would likely have implications
on the role of natural enemies regulating resistance evolution of
targeted insect pests to Bt crops (Bates et al., 2005; Onstad and
Knolhoff, 2014). We believe that this is the first study to report that
a predator could not distinguish between Bt plants and non-Bt
plants, although some studies have addressed foraging behavior
of parasitoids (Schuler et al., 1999, 2003). In our earlier research,
we studied the effects of different genotype P. xylostella larvae
fed on Bt crops on Diadegma insulare (Liu et al., 2011) and the
results showed that the parasitoid also did not discriminate host
genotype, nor between Bt and normal broccoli plants with differ-
ent genotype of P. xylostella feeding on them.

In the present study, CrylAc was found in C. maculata larvae
that fed on Bt broccoli-reared resistant P. xylostella, but no
Cry1Ac was found in new emerged adults (Table 3). It is worth not-
ing that the Cry1Ac level was very high in pupal cocoon. A possible
reason is that Cry1Ac was excreted with other waste in the pupal
meconium. We also obtained similar results in our study with
the pupal cocoon of the parasitoid D. insulare (Liu et al., 2011),
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and noted that the adult parasitoid had very low levels of Cry1Ac.
When C. maculata fed on Bt broccoli-reared resistant P. xylostella
larvae for 3, 4 and 6 d, Cry1Ac was found in C. maculata adults,
but there were no differences between the length of feeding.
Therefore, we conclude that CrylAc can transfer from the plant
to the prey to the host, but does not accumulate in the body of
the predator.

In conclusion, transgenic Bt broccoli plants expressing Cry1Ac
can effectively control P. xylostella but has no direct effects on C.
maculata. Cry1Ac is one of the main Bt protein used in Bt cotton
(Naranjo et al., 2008) and structurally very similar to the main pro-
tein used in Bt maize (Hellmich et al., 2008). Thus, based on our
results and other studies (Duan et al, 2002; Lundgren et al.,
2005; Li et al.,, 2011; Tian et al., 2012) we conclude that Cry1Ac
is safe to C. maculata. For other predators, other studies have
reached similar conclusions (Lawo et al., 2010; Li and Romeis,
2010; Wang et al., 2012; Zhao et al., 2013; Tian et al., 2013,
2014b). Therefore, the evidence suggests that Bt broccoli, and
probably other plants, expressing Cry1Ac does not harm important
natural enemies and would be compatible with biological control
within an overall integrated pest management program.
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