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Abstract: A concern related to the use of insect-resistant Bt-transgenic plants is their potential to harm
non-target organisms, especially natural enemies of important crop pests. A few studies purporting to
show negative effects of Bt plants on non-target organisms had tremendous negative effects on the
perception of Bt plants and on regulatory decisions. Focusing on the tri-trophic non-target studies it
became evident that the design of these studies often did not account for the quality of the hosts being
fed to the natural enemies. This occurred when Bt-susceptible hosts that had ingested Bt (Cry) proteins
and became compromised were fed to natural enemies, causing indirect prey/host-quality mediated
effects. The result was that the natural enemy often developed more slowly, had higher mortality, or
decreased fecundity due to the poor host quality, not the Cry protein. Here we review studies that
overcame this methodological problem in testing Cry proteins against natural enemies by feeding them
strains of pest insects that had evolved resistance to Cry proteins expressed in the Bt plants. The
studies utilized natural enemies from multiple orders and families of insect predators and parasitoids,
and an entomopathogenic nematode. The study results provide unambiguous evidence on the lack of
effects of these Cry proteins on important natural enemies and provide guidance for future non-target
studies. These data confirm the large and sound body of literature demonstrating that the Cry proteins
currently used in Bt crops for control of Lepidoptera are not harmful to natural enemies that are
important for biological control of these and other pest species.
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Background

The biological control function provided by natural enemies should not be harmed by the
application of any new pest management practice. Plants producing insecticidal (Cry) proteins
from the bacterium Bacillus thuringiensis (Bt), have become a major tactic for controlling
pest Lepidoptera on cotton and maize, and pre-release risk assessment studies are conducted
to ensure they do not harm important natural enemies (Romeis et al., 2008).

Such risk assessment studies need to be carefully designed (Romeis et al., 2011, 2013;
De Schrijver et al., 2016) to produce results that are reliable and robust. In particular, the test
species needs to be exposed to biologically active Cry protein to avoid false negative results.
To avoid false positive results, care has to be taken that observed effects can be related to the
insecticidal protein and are not an artifact of a poor study design. This is particularly
challenging in the case of tri-trophic studies deploying Bt plants, herbivores, and non-target
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natural enemies where potential effects of host/prey-quality have to be taken into account.
Such indirect effects on predators or parasitoids usually result when they feed on susceptible
hosts that have ingested Cry proteins and become less suitable as food for the natural enemy.
The outcome is that as the host suffers, so does the natural enemy, leading some to suggest
there is a direct effect of the Cry protein on the natural enemy. The need to separate indirect,
host/prey-quality related effects from direct toxic effects of the Cry proteins has repeatedly
been demonstrated (Romeis et al., 2006; Naranjo, 2009; Shelton et al., 2012).

One way of overcoming the effects of host/prey-quality is to feed non-susceptible
herbivores the Cry protein and then allow the predator or parasitoid to feed on this
uncompromised organism and study the life history traits (development time, survivorship,
fecundity, etc.) of the natural enemy. One suggested method for removing host effects
consists of using once-susceptible hosts that have developed resistance to the Cry protein and
natural enemies that typically feed on the host in the field.

Non-target studies deploying Cry protein-resistant caterpillars as host or prey

A number of tri-trophic studies were conducted using lepidopteran species that had evolved
resistance to Cry proteins expressed in plants as host or prey for natural enemies (Table 1).
Studies were conducted to assess the non-target effects of Bt proteins expressed in cotton
(CrylAc/Cry2Ab), corn (CrylF), broccoli (CrylAc or CrylC), and oilseed rape (CrylAc).
The studied Cry proteins are also common in commercialized Bt crops (e.g., Bollgard® 11
cotton expressing CrylAc+Cry2Ab; Herculex® | corn expressing CrylF). The resistant
caterpillars were allowed to feed on the plants before they were subjected to the natural
enemies. In all studies the respective non-Bt isolines (or near-isolines) were used as controls.

For parasitoids, in no case were there any differences in the percent parasitism,
emergence rate of the parasitoids and fecundity of parasitoids that developed on hosts that had
consumed any of the Cry proteins, compared to hosts that developed on the corresponding
non-Bt plants. Similarly, the studies on predators did not reveal any differences in the
development, survival or fecundity of predators that fed on a prey that consumed Bt foliage,
compared to the prey that had fed on non-Bt plants. Likewise the entomopathogenic nematode
was not affected in important fitness parameters such as virulence, reproductive potential,
time of emergence, and host preference.

To avoid false negative results, the majority of the studies quantified the amount of
Cry protein in the host or prey caterpillars. In addition, many studies confirmed with sensitive
insect bioassays that the Cry proteins detected in the caterpillars were still biologically active.
Thus, the results that the tested Cry proteins are not adversely affecting the tested natural
enemies are very robust.

Discussion

Using non-susceptible, Cry protein resistant lepidopteran hosts or prey avoids the problems
encountered by others (e.g., Ponsard et al., 2002; Lovei et al., 2009) who have claimed that
lepidopteran-active Bt proteins harm important natural enemies (Shelton et al., 2009; 2012).
The studies listed in Table 1 provide assurance that the Cry proteins tested do not present a
hazard to a diverse set of predators in five different families belonging to three insect orders
(Neuroptera, Hemiptera, Coleoptera), to three species of parasitoids belonging to two families
of Hymenoptera, and to the entomopathogenic nematode H. bacteriophora.
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The physiology and feeding behaviors of the different predators represent the main
feeding behaviors found in predatory arthropods. Likewise, the three hymenopteran
parasitoids used represent a common life history in which the parasitoid’s egg is laid inside
the host and the parasitoid larva develops within the host by feeding on its tissues. A similar
parasitic behavior is displayed by the entomopathogenic nematode except that juveniles infect
the host. The fact that none of the natural enemies was harmed by any of the Cry proteins
indicates that they, and other similar species, are not at risk.

The results from the studies listed in Table 1 are in accordance with the large body of
literature that shows that the spectrum of activity of the lepidopteran-active Bt Cry proteins
deployed in today’s Bt crops is restricted to the target insects order (Romeis et al., 2006;
Naranjo, 2009). The safety of those Cry proteins to natural enemies has an added benefit for
managing lepidopteran pests of Bt crops. Modeling (Onstad et al., 2013) and empirical studies
(Liu et al., 2014) have shown that the conservation of natural enemies by the use of Bt plants
can delay the evolution of resistance to Bt plants by the pest species.
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